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One-dimensional kinematics of stretching faults 
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Abstract - -An analysis is given of the instantaneous motion and finite displacement across faults with wall-rocks 
that are changing length in the slip direction while slip accumulates. The main results of interest are that faults 
with extending or shortening wall-rocks can display slip-rate and net-slip gradients in the slip direction, and local 
reversal of the sense-of-slip over time. These effects depend on unequal rates of extension or shortening in the 
two wall-rock blocks. Where the rates of length-change are equal, the behavior more closely resembles the 
behavior of faults with rigid wall-rocks. 

INTRODUCTION 

STRETCHING faults (Means 1989) (Fig. 1) are hypothetical 
faults embedded in flowing rock bodies, with wall-rocks 
that change length in the slip-direction while slip 
accumulates. They may be anticipated in various flow 
environments in the Earth but will remain hypothetical 
until criteria for their recognition are developed and 
successfully applied to natural examples. One group of 
potentially useful criteria are provided by the kinematic 
and displacement properties of stretching faults. These 
are derived below for what will be called Type I stretch- 
ing faults (with the same rate of length-change in both 
fault walls) and Type II stretching faults (with different 
rates of length-change in the two walls). The treatment is 
one-dimensional in the sense that the only motion con- 
sidered is the motion of lines of particles lying in the slip- 
direction and in the fault-wall planes. This limited analy- 
sis is sufficient to reveal salient features of the slip-rate 
and displacement patterns of stretching faults. 

As defined above and in Means (1989), a stretching 
fault is a fault inside a regionally straining rock volume, 
with slip-parallel stretching of the fault walls as a conse- 
quence of the regional strain-rate field. In these circum- 
stances, fault slip and wall-rock flow are geometrically 
independent processes, though driven by the same re- 
mote loads. 

A quite different situation, and a more familiar one in 
the literature, is the association of fault slip and wall- 
rock flow where the two phenomena are geometrically 
coupled. Here flow occurs as a necessary accompani- 
ment to slip, to solve room problems around obstacles 
like fault ramps (e.g. Rich 1934, Elliott 1976, Sanderson 
1982) or arising from the existence of fault ends or 'tips' 
where the displacement vanishes (e.g. Elliott 1976, 
Hildebrand-Mittlefehldt 1979, 1980, Walsh & Watter- 
son 1989). In these circumstances, stretching faults can 
still arise, but they will tend to be of the kinds referred to 
in Means (1989) as "half stretching faults" or "mixed 
stretching faults". Examples are provided, respectively, 
by slip-parallel extension restricted to the hangingwall at 
thrust ramps (e.g. Elliott 1976, fig. 2) and by the adjac- 
ent extended and shortened walls of the C-type faults of 
Muraoka & Kamata (1983). 

In the Earth, there is probably a complete spectrum of 
possibilities, from faults with dominant regional, slip- 
independent straining of the fault walls, to faults with 
dominant local, slip-dependent straining of the fault 
walls. Faults or fault segments of intermediate character 
will display wall-rock strains including components of 
regional and of local origin. The following analysis is 
concerned explicitly with effects of regional wall-rock 
straining, remote from fault bends or ends, but the 
equations are general enough to have some application 
to cases where the wall-rock strains are locally induced. 
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Fig. 1. Positive and negative stretching faults, with wall-rock extension 
(left) or shortening (right) while slip accumulates. Initially vertical 

lines are passive markers. 
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REFERENCE FRAME AND VELOCITY 
EQUATIONS 

The reference frame employed has its origin pinned to 
a particle in one fault wall and an x axis extending from 
this particle in the direction of slip (Fig. 2). The wall 
bearing the origin is arbitrarily designated the footwall. 
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Fig. 2. Reference frame with origin fixed to a particle in the footwall 
plane. 
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Fig. 3. Velocity field for Type I stretching fault with a = 0.13 per unit time and b = 0.2 unit distance per unit time. Heavy 
arrow pointing to right at each hangingwall position represents the spatially uniform component (b) of the hangingwall 
velocity field. Lighter arrows pointing away from the origin in both walls represent the spatially variable component (ax) of 
the velocity field due to the stretching. Total velocity at any hangingwall position is the vector sum of the two components. 

Velocity vectors drawn to the same scale as distances x. 

The general velocity equations, which describe the 
velocity v of particles instantaneously at various pos- 
itions x in the hangingwall h and footwall f, are 

Vh = CX + b (1) 
Vf = a x ,  

where a and c are the longitudinal strain-rates or stretch- 
ings of the footwall and hangingwall in the slip direction. 
If, for example, a has a value of plus 0.2t -1, the footwall 
is extending at a rate of 20% per unit of time. For faults 
with rigid wall-rocks, a and c are zero, and the velocity 
equations reduce to 

V h = b  
vf = 0. (2)  

In both (1) and (2), b is the spatially uniform component 
of the slip-rate. In rigid fault kinematics, b is the only 
non-zero component of the slip-rate. In stretching fault 
kinematics as formulated here, b is equal to the slip-rate 
at the origin but elsewhere along the fault, the slip-rate is 
partly controlled by the stretchings a and c, as explained 
later. 

In all the examples illustrated in this paper, a and c are 
both positive or both negative. These are the kinds of 
faults termed positive or negative stretching faults, re- 
spectively (Means 1989). Other simplifying restrictions 
of the analysis are that the fault trace is straight and 
unbranched, and that a, b and c in the velocity equations 
have values that are uniform over the segment of fault 
plane considered and constant over the interval of time 
considered. Finally, there is assumed no gain or loss of 
material along the fault plane during movement. 

Faults with rigid wall-rocks, subject to the preceding 
restrictions, obey three rules: (1) the slip-rate is uniform 
along the fault trace and everywhere equal to b; (2) the 
net slip after any elapsed time t is also spatially uniform; 
and (3) this is everywhere equal to the product bt. It will 
be shown below that Type I stretching faults violate rule 
(3) and that Type II stretching faults violate all three 
rules of rigid fault behavior. 

TYPE I STRETCHING FAULTS 

Type I stretching faults are represented by velocity 
equations of the form 

V h = ax + b (3) 
Vf = ax .  

The velocity field of the fault walls is shown in Fig. 3, for 
an example with a -- 0.13 per unit time and b = 0.2 unit 
distance per unit time. 

The slip-rate [v] of the hangingwall with respect to the 
footwall is given by the difference between Vh and vf, 

Iv] = b (4) 

and is seen to be independent of position along the fault 
plane, in accordance with rigid fault rule (1). 

The velocity equations (3) are differential equations 
that can be rewritten in differential form, 

dt = d X h / ( a x  h + b) 
dt =(1/a)( dxf/xf) (5) 

and integrated to give the position equations 

Xh =(Xh + b/a)e at - b/a 
Xf = X f e  at. 

(6) 

These give the position Xh or xf after time t of particles, 
in the hangingwall and footwall, respectively, that were 
opposite one another at position X at time 0. The 
constants of integration are found by requiring that at 
time 0, Xh and xf should be equal to Xh and Xf, respect- 
ively, where Xh and Xf are defined as the initial positions 
of hangingwall and footwall particles. 

Setting Xf equal to 1 in the second equation of (6) 
yields the stretch equation 

S = e at. (7) 

This gives the stretch of each fault-wall (deformed 
length in the slip direction divided by undeformed 
length) after any elapsed time t. 

The net slip NS can be found at any time t by 
subtracting Xe from Xh as given by (6) and is 

NS = b/a(e a t -  1). (8) 

This net-slip equation indicates that although the slip- 
rate is everywhere equal to b and constant in time, the 
net slip is not the product of the slip-rate and t, as with 
rigid faults, but is greater or less than bt, depending on 
the stretching a. For positive stretching faults, the net 
slip always exceeds bt. 

Notice that the velocities given by any of the velocity 
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equations above are velocities at fixed posit ions in space. 
They are only momentarily the velocities of fault-wall 
particles, since the particles are typically moving from 
one position to another and adopting a succession of 
different velocities. To obtain the particle velocity 
equations, it is necessary to differentiate the position 
equations (6) with respect to time, keeping X constant. 
This yields 

Vh = (Xh + b/a)ae at 
Vf = X fae  at. (9) 
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Finally, one can set equations (9) equal to each other to 
yield the isovelocity distance d with 

d = b/a. (10) 

d gives the distance, measured from a particle in the 
hangingwall to a particle in the footwall, between pairs 
of particles that have identical velocity histories. Such 
pairs of particles remain separated by the same distance 
d as time passes, because they are always travelling at 
the same velocity as each other. For faults with rigid 
wall-rocks the isovelocity distance is effectively non- 
existent (equal to infinity). 

Figure 4 shows three stages in the history of a Type I 
stretching fault, with a = 0.13 and b = 0.20 (as in Fig. 3), 
constructed using equations (6). No shear strain of the 
wall-rock blocks is indicated (i.e. the shaded regions are 
maintained rectangular throughout the history). This is 
unrealistic since the shear stress necessary for fault slip 
could be expected in general to promote shear strain in 
the wall-rock blocks. However, the magnitudes of these 
shear strains are undefined using the present one- 
dimensional analysis, and in the absence of any specified 
stress-state and wall-rock material properties. So the 
shear strain is shown as zero in Fig. 4 (and Fig. 5), in 
preference to showing arbitrary finite shear strains. The 
finite flattening normal to the fault plane is indicated 
however, assuming conservation of area in the plane of 
the paper. Whether or not this assumption is correct, 
Fig. 4 still indicates salient features of Type I faults as 
follows. 

Both fault walls have stretched in the slip direction, At 
time 4 the accumulated stretch is 1.68, as equation (7) 
requires. 

The net slip is uniform along the fault plane at each 
stage in the history. At time 4 the net slip is 1.05, as 
required by equation (8). It exceeds the product of the 
local slip-rate (0.2) and the time elapsed (4) by a sub- 
stantial factor. 

The isovelocity distance for this example is 1.54, as 
given by equation (10). This means that the hangingwall 
particle at the tip of the arrow in Fig. 4 (which is 1.54 
length units from the origin) always has the same veloc- 
ity as the footwall particle at the origin, namely zero. 
The existence of this null  velocity particle in the hanging- 
wall can be understood by observing that it is the particle 
whose velocity b to the right is exactly equalled by its 
velocity ax to the left due to the hangingwall stretching. 
Faults with rigid wall-rocks can never have null velocity 
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Figl 4. Three stages in the development of a Type I stretching fault. 
Light numbers are spatial co-ordinates giving the distance x from the 
origin. Heavy numbers identify particular material particles in the 
fault walls according to their initial positions X. Arrow shows position 
of null velocity particle in the hangingwaU. Note uniform net slip all 

along the fault. 

particles in the wall opposite the wall to which the origin 
is fixed. 

TYPE II STRETCHING FAULTS 

Equations for Type II faults are derived in similar 
fashion to those for Type I faults, with slightly more 
complex results because now the footwall and hanging- 
wall stretchings are unequal. 

The velocity equations are 

Vh = CX + b 
(11) 

V f  m a x ,  

from which it can be seen that the slip-rate equation is 

[v] = (c - a)x + b. (12) 

Note that the slip-rate now consists of two parts, a 
spatially uniform component b and a position- 
dependent component that varies linearly with position, 
by a factor which is the difference between the hanging- 
wall and footwall stretchings. Type II faults thus always 
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display slip-rate gradients along the fault trace, unlike 
faults with rigid wall-rocks and Type I faults. 

The position equations, obtained by integrating 
equations (11), are 

Xh = (Xh + b / c ) e  a -  b / c  
xf  = S f e  at (13) 

and these, by subtraction, give the net-slip equation 

NS = X ( e  ct - e at) + b / c ( e  ct - 1). (14) 

Different pairs of initially contiguous particles X thus 
display different net slips at any given time. Or in other 
words, there is always a net-slip gradient along a Type II 
fault. 

The particle velocity equations are 

Vh = (Xh + b /c )ce~ t  (15) 
Vf = Xfae at 

and an isovelocity distance d is now 

d = b/c. (16) 

All of the equations have the same meanings as the 
corresponding equations for Type I faults, except for the 
isodistance equation. The d given in (16) applies only to 
the distance from a footwall particle at the origin to a 
hangingwall particle with the same (null) velocity. Other 
footwall particles have isovelocity partners in the 
hangingwall, but the distance between these pairs of 
particles is different from d in (16) and different for each 
footwall particle. 

Figure 5 represents the history of a Type II fault, with 
a and b the same as in Fig. 4, but with the hangingwall 
stretching now 0.08 and thus different from the footwall 
stretching. Note the net-slip gradient at time 2 and time 
4, indicated by the unequal separation of particle pairs 0, 
2, 4, etc. There is even a reversal of the sense of the net 
slip somewhere between particle pairs 2 and 4 at time 4. 
Again, the arrow points to a null velocity particle in the 
hangingwall, at distance d from the origin given by (16). 

Slip-rate and net-slip null points 

Unlike rigid or Type I faults, Type II faults exhibit 
points where the slip-rate or the net slip are zero. The 
sense of the slip-rate and the net-slip reverses across 
these null points. Setting (12) equal to zero yields 

x = b/(a - c) (17) 

as the position at which the slip-rate is zero. Note two 
important features of this slip-rate nullpoint: it is fixed in 
position spatially but not materially. That is to say, it sits 
permanently at a certain distance from the origin (and 
from the null velocity point in the hangingwall) and 
material of both fault walls passes through it. At the 
moment of passage, the slip-rate is zero because the 
velocity of both fault walls is identical. In the example of 
Fig. 5, equation (17) indicates that the slip-rate null 
point is at x = 4.0. To the left of this point the slip-rate is 
always dextral; to the right it is sinistral. 
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Fig. 5. Three stages in the development of a Type II stretching fault. 
Numbers and arrow have the same significance as in Fig. 4. Note net- 
slip gradient along the fault and reversal of the sense of the net slip at 

time 4, between particle-pairs 2 and 4. 

The behavior of the net-slip null point  is different. It 
migrates through the material of both fault walls and 
changes its position with respect to the origin. At time 
zero the net-slip and slip-rate null points are coincident. 
Thereafter the two null points separate and become 
more separated, spatially, as time passes. 

The particle pairs X at the net-slip null point at any 
time t can be found by setting (14) equal to zero, yielding 

X = (b(e e ' -  1))/(c(e " t -  eC')). (18) 

Thus, the net-slip null point observed earlier to lie 
somewhere between particles 2 and 4 at time 4 in Fig. 5, 
can be determined to lie precisely at the position of the 
particles with X = 3.09. The spatial position of this null 
point can be found by substituting X = 3.09 and t = 4 in 
either of the equations (13), yielding x = 5.20. So at time 
4 in Fig. 5, the slip-rate null point is fixed atx = 4.00 and 
the net-slip null point is currently atx = 5.20 but migrat- 
ing to the right, ever farther from the slip-rate null point 
as time passes. 

The spatial separation of the slip-rate and net-slip null 
points gives rise to a segment along a Type II fault on 
which the senses of the slip-rate and the net slip are 
opposite, even with the basic slip and flow parameters a, 
b and c held constant. I illustrate this by considering the 
spatial and velocity histories of particles initially 
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Fig. 6. History of slip for particle-pair 3 of Fig. 5, marked by circle in footwall and flag in hangingwall. Arrows indicate 
particle velocities at each time t. Early dextral net slip decays and becomes sinistral net-slip, as described more fully in text. 
The slip-rate null point is fixed at a position 4 distance units from the origin. The net-slip null point is at 5.38 distance units 
from the origin when the circle and the flag pass through it, but moves farther from the origin as time passes. The material of 

both fault walls migrates through the two null points. 

opposite one another at X = 3 (Fig. 6). The positions of 
the particles at times 0--6 are calculated using equations 
(13) and the velocities at these positions are calculated 
using equations (15). 

Figure 6 can be understood best if the reader imagines 
an observer standing on the particle X = 3 in the foot- 
wall throughout the history. This particle is circled in 
Fig. 6, and at time 0 it is at position x = 3. Imagine that at 
time 0 the observer plants a flag on the hangingwall 
particle immediately opposite him, also at x = 3. The net 
slip at any subsequent time, relative to the observer's 
post at the circle, will be the distance, measured in the 
slip direction, from the circle to the flag. 

By time 1, the circle and the flag have both moved to 
the right (relative to the origin at x = 0) but the flag has 
moved farther, so the net slip is dextral. The current 
velocity of the flag is also slightly greater than that of the 
circle (0.476 units of distance per unit time vs 0.444), so 
the net slip is increasing. At  the observer's position 
(x = 3.42), equation (12) can be used to determine that 
the slip-rate is positive (dextral). 

By time 2 the dextral net slip has increased some and 
the velocity of the flag remains greater than the velocity 
of the circle (0.516 vs 0.505), meaning that the net slip is 
still instantaneously increasing. The slip-rate remains 
dextral, both at the observer's station and nearby at the 
flag. 

When the flag crosses the slip-rate null point at x = 4, 
it is moving at exactly the same velocity as the particle 
opposite the flag in the footwall. This particle is not 
however the observer's particle in the footwall. When 
the flag's part of the fault experiences its null slip-rate 
moment,  the observer's station is still opposite part of 
the fault that is slipping dextrally, though at a decreasing 
rate. As the observer crosses the slip rate null point, the 
circle and the particle opposite are instantaneously 
travelling at the same velocity as each other and at the 
same velocity as the flag was when it crossed the null 
point. 

By time 3 the net slip is still dextral, but the circle is 

now travelling faster than the flag (0.576 vs 0.559), so the 
net slip is decreasing. The slip-rate is sinistral every- 
where to the right of x = 4, so the sense of the slip-rate 
(at the circle and at the flag) is now opposite to the sense 
of the net slip. This condition persists as the circle and the 
flag approach the net-slip null point, with the circle 
catching up to the flag because its velocity is greater 
(0.656 vs 0.605 at time 4). 

At  the net-slip null point (at x = 5.38) the flag is once 
again exactly opposite the observer, and the net slip is 
zero. Beyond this point, the observer sees the flag 
moving farther and farther to his left. Sinistral net slip 
then accumulates indefinitely. 

Note that the net-slip null point at x = 5.38 applies 
only to the particles initially at X = 3. The net-slip null 
point migrates to higher x values as it is crossed by 
particles with lower X values (initial positions). The 
fault segment with decreasing net slip thus widens with 
time. 

DISCUSSION 

The preceding analysis contains an arbitrary element 
that needs to be pointed out. I have considered a, b and c 
in the velocity equations (3) and (11) to be constant over 
whatever interval of time is considered. This is physi- 
cally reasonable for a and c, since these are the fault- 
parallel extension-rates in the wall-rocks, and they 
might well be more or less constant under a given state of 
stress in recrystallizing wall-rocks. But setting b constant 
is arbitrary and was done for mathematical convenience. 
b is the slip-rate at the origin--i.e, the rate at which 
hangingwall material moves past the footwall particle to 
which the origin is pinned. Setting b constant brings with 
it the convenient feature that the slip-rate at any position 
x will also be constant (equation 12). But it also means 
that for any particle Xother  than X = 0, the slip-rate will 
vary with time. So setting b constant gives the particle at 
the origin a different slip-rate history from all other 
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particles in the footwall (constant vs varying slip-rate). I 
see no physical justification for this. But even if b is 
allowed to vary with time, the same main results are 
obtained for Type II faults--they exhibit slip-rate and 
net-slip null points, and net-slip reversal for certain 
particle-pairs. This also holds true if the reference 
frame, instead of being pinned to a particle in one fault- 
wall, is assigned a fixed position in a space relative to 
which both fault-walls are moved. 

Slip-rate and net-slip gradients have been shown 
above to be characteristic features of Type II stretching 
faults but they are not diagnostic of faults with wall-rock 
strains of slip-independent, regional origin. Local, slip- 
dependent wall-rock strains due, for example, to fault 
end effects (e.g. Walsh & Watterson 1989) can also give 
rise to net-slip (and probably slip-rate) gradients, as can 
branching faults. So net-slip gradients alone are not 
sufficient evidence for positive or negative Type II 
stretching faults. 

If large-scale stretching faults exist at all in the Earth, 
they are likely to be Type II. Type I are a special case, 
with identical stretchings in both walls, a situation not 
expected to be normal on large-scale faults separating 
rocks of different lithology. So the complex behavior 
indicated in Fig. 6, with the net slip increasing, then 
decreasing, and finally reversing sign, may be of some 
real importance. This net-slip reversal on faults recalls 
the situation encountered in flowing volumes of rock, 
where the shortening of a material line may increase, 
then decrease, and eventually reverse sign as the line 
recovers its original length and begins to extend, all in 
the course of a simple homogeneous progressive defor- 
mation (Ramberg 1959). The slip-rate and the net slip in 
the stretching fault case are analogous to the strain-rate 

and the finite strain in the case of the progressively 
deforming volume. 

The theory outlined in this paper is for the situation 
where a, b and c are uniform over the length of fault 
plane considered. What happens when these quantities 
vary with position in the material, as they are likely to do 
in real examples? What happens if, in each small region 
of the material, a and c change with time? Perhaps the 
most worthwhile undertaking now is not to pursue these 
further convolutions of the theory, but to look closely at 
real, natural and experimental faults to see whether any 
of them are or were stretching faults. 
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